Enhanced Fluidization of Nanoparticles in an Oscillating Magnetic Field

نویسندگان

  • Qun Yu
  • Rajesh N. Dave
  • Chao Zhu
  • Jose A. Quevedo
  • Robert Pfeffer
چکیده

Some experimental observations on the fluidization characteristics of nanoparticles in the form of agglomerates with magnetic assistance are presented. The nanoagglomerates consist of Degussa Aerosil R974 fumed silica, with a primary particle size of 12 nm. An oscillating AC magnetic field is used to excite large (mm size) permanent magnetic particles mixed in with the nanoparticle agglomerates, and the fluidization behavior of the nanoagglomerates, including the fluidization regime, the minimum fluidization velocity, the bed pressure drop, and the bed expansion are investigated. It is shown that, with the aid of an oscillating magnetic field at low frequencies, the bed of nanoparticle agglomerates can be smoothly fluidized, and the minimum fluidization velocity is significantly reduced. In addition, channeling or slugging of the bed disappears and the bed expands uniformly without bubbles, and with negligible elutriation. The bed expansion and the minimum fluidization velocity depend on the mass ratio of magnetic particles to nanoparticles, and the intensity and frequency of the oscillating magnetic field. © 2005 American Institute of Chemical Engineers AIChE J, 51: 1971–1979, 2005

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Temperature Induced Effects of Magnetized Iron Oxide Nanoparticles in Alternating Magnetic Field in Cancer Cells

This paper reports the damaging effects of magnetic iron-oxide nanoparticles (MNP) on magnetically labeled cancer cells when subjected to oscillating gradients in a strong external magnetic field. Human breast cancer MDA-MB-231 cells were labeled with MNP, placed in the high magnetic field, and subjected to oscillating gradients generated by an imaging gradient system of a 9.4T preclinical MRI ...

متن کامل

Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles

Colloidal suspensions of iron oxide magnetic nanoparticles are known to dissipate energy when exposed to an oscillating magnetic field. Such energy dissipation can be employed to locally raise temperature inside a tumor between 41°C and 45°C (hyperthermia) to promote cell death, a treatment known as magnetic fluid hyperthermia (MFH). This work seeks to quantify differences between MFH and hot-w...

متن کامل

Analytic-Approximate Solution For An Integro- Differential Equation Arising In Oscillating Magnetic Fields Using Homotopy Analysis Method

In this paper, we give an analytical approximate solution for an integro- differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields is considered. The homotopy analysis method (HAM) is used for solving this equation. Several examples are given to reconfirm the efficiency of these algorithms. The results of applying this procedure...

متن کامل

Taking the Temperature of the Interiors of Magnetically Heated Nanoparticles

The temperature increase inside mesoporous silica nanoparticles induced by encapsulated smaller superparamagnetic nanocrystals in an oscillating magnetic field is measured using a crystalline optical nanothermometer. The detection mechanism is based on the temperature-dependent intensity ratio of two luminescence bands in the upconversion emission spectrum of NaYF4:Yb(3+), Er(3+). A facile step...

متن کامل

Induced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study

In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005